
Parallelization	and	Performance	of	the	NIM	Weather	
Model	for	CPU,	GPU	and	MIC	Processors	

Mark	Govett1,	Jim	Rosinski2,	Jacques	Middlecoff2,	Tom	Henderson2,	Jin	Lee1,	Alexander	MacDonald1,		
Paul	Madden3,	Julie	Schramm2,	Antonio	Duarte3	

	

Preprint	Submitted	to	BAMS	for	Review	
February	9,	2016	

Abstract	
	
	 The	 design	 and	 performance	 of	 the	 NIM	 global	 weather	 prediction	 model	 is	 described.	 NIM	 was	
designed	to	run	on	GPU	and	MIC	processors.	It	demonstrates	efficient	parallel	performance	and	scalability	
to	 tens	 of	 thousands	 of	 compute	 nodes,	 and	 has	 been	 an	 effective	 way	 to	 make	 comparisons	 between	
traditional	CPU	and	emerging	fine-grain	processors.	Design	of	the	NIM	also	serves	as	a	useful	guide	for	fine-
grain	parallelization	of	the	FV3	and	MPAS	models,	two	candidates	being	considered	by	the	NWS	as	their	
next	global	weather	prediction	model	to	replace	the	operational	GFS.	
	 The	F2C-ACC	compiler,	co-developed	to	support	running	the	NIM	on	GPUs,	has	served	as	an	effective	
vehicle	to	gain	substantial	improvements	in	commercial	Fortran	OpenACC	compilers.	Performance	results	
comparing	F2C-ACC	with	commercial	GPU	compilers	demonstrate	their	increasing	maturity	and	ability	to	
efficiently	parallelize	and	run	next	generation	weather	and	climate	prediction	models.	
	 This	 paper	 describes	 the	 code	 structure	 and	 parallelization	 of	 NIM	 using	 F2C-ACC,	 and	 standards	
compliant	 OpenMP	 and	 OpenACC	 directives.	 NIM	 uses	 the	 directives	 to	 support	 a	 single,	 performance-
portable	 code	 that	 runs	 on	 CPU,	 GPU	 and	 MIC	 systems.	 Performance	 results	 are	 compared	 for	 four	
generations	of	computer	chips.	Single	and	multi-node	performance	and	scalability	is	also	shown,	along	with	
a	cost-benefit	comparison	based	on	vendor	list	prices.	
	 	

1.	Introduction	
	
A	 new	 generation	 of	 High-Performance	 Computing	 (HPC)	 has	 emerged,	 referred	 to	 as	 Massively	
Parallel	 Fine	 Grain	 (MPFG).	 The	 term	 “Massively	 Parallel”	 refers	 to	 systems	 containing	 tens	 of	
thousands	to	millions	of	processing	cores.	“Fine	Grain”	refers	to	loop	level	parallelism	that	must	be	
exposed	 in	 the	application	 to	permit	 thousands	 to	millions	of	arithmetic	operations	 to	be	executed	
every	clock	cycle.	Two	general	classes	of	MPFG	chips	are	available:	Many	Integrated	Core	(MIC)	from	
Intel	and	Graphics	Processing	Units	(GPUs)	from	NVIDIA	and	AMD.	In	contrast	to	up	to	36	cores	used	
on	 the	 latest	 generation	 Intel	 Haswell	 CPUs,	 these	 MPFG	 chips	 contain	 hundreds	 to	 thousands	 of	
processing	cores.	They	provide	10-20	times	greater	peak	performance	than	CPUs,	and	they	appear	in	
systems	that	increasingly	dominate	the	list	of	top	supercomputers	in	the	world	(Top500,	2015).	Peak	
performance	does	not	translate	to	real	application	performance	however.	Good	performance	can	only	
be	 achieved	 if	 fine-grain	 parallelism	 can	 be	 found	 and	 exploited	 in	 the	 codes.	 Fortunately,	 most	
weather	and	climate	codes	contain	a	high	degree	of	parallelism	making	them	good	candidates	for	MPFG	
computing.	
	
As	a	result,	research	groups	worldwide	have	begun	parallelizing	their	weather	and	climate	prediction	
models	for	MPFG	processors.	The	Swiss	National	Supercomputing	Center	(CSCS)	has	done	the	most	
comprehensive	work	so	 far.	They	parallelized	 the	dynamical	core	of	 the	COSMO	model	 for	GPUs	 in	

																																																								
1 NOAA Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305.
2 Cooperative Institute of Research in the Atmosphere, Colorado State University, Fort Collins, Colorado 80523.
3 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309.

2013	(Fuhrer	et	al.	2014).	At	that	time,	no	viable	commercial	Fortran	GPU	compilers	were	available	so	
the	code	was	re-written	in	C++	to	enhance	performance	and	portability.	They	reported	the	C++	version	
gave	 a	 2.9X	 speedup	 over	 the	 original	 Fortran	 code	 using	 same	 generation	 dual-socket	 Intel	
SandyBridge	CPU	and	Kepler	K20x	GPU	chips.	Parallelization	of	model	physics	in	2014	preserved	the	
original	 Fortran	 code	 by	 using	 industry	 standard	 OpenACC	 compiler	 directives	 for	 parallelization	
(Lapillonne	et	al.	2014).	The	entire	model,	including	data	assimilation	is	now	running	operationally	on	
GPUs	at	MeteoSwiss.	
	
Most	groups	primarily	 focused	on	parallelization	of	model	dynamics.	The	German	Weather	Service	
(DWD)	and	Max	Planck	Institute	for	Meteorology	(MPI-M)	developed	the	ICON	dynamical	core,	which	
has	been	parallelized	for	GPUs.	Early	work	converted	the	Fortran	using	NVIDIA	specific	CUDA-Fortran	
and	OpenCL,	demonstrated	a	2X	speedup	over	dual	socket	CPU	nodes.	The	invasive,	platform-specific	
code	 changes	 were	 unacceptable	 to	 domain	 scientists,	 so	 current	 efforts	 are	 focused	 on	 minimal	
changes	to	the	original	code	using	OpenACC	for	parallelization	(Sawyer	et	al.	2014).	Another	dynamical	
core,	the	Non-hydrostatic	ICosahedral	Atmospheric	Model	(NICAM),	has	been	parallelized	for	GPUs,	
with	a	reported	7-8X	performance	speedup	comparing	2	NVIDIA	K20x	GPUs	to	single	older	generation,	
dual	socket	Intel	Westmere	CPUs	(Yashiro	et	al.	2014).	Other	dynamical	cores	parallelized	for	the	GPU	
including	the	Finite-Volume	cubed	(FV3)	model	(Nguyen	et	al.	2013)	used	in	GEOS-5	(Putnam	2011),	
and	the	HOMME	(Carpenter	et	al.	2013)	have	both	shown	some	speedup	versus	the	CPU.	
	
Collectively,	 these	experiences	show	that	porting	codes	to	GPUs	can	be	challenging,	but	most	users	
have	 reported	 speedups	 over	 CPUs.	 Over	 time,	 more	 mature	 GPU	 compilers	 have	 simplified	
parallelization,	 and	 improved	application	performance.	However,	 reporting	of	 results	has	not	been	
uniform	and	can	be	misleading.	Ideally,	comparisons	should	be	made	using	the	same	source	code,	with	
optimizations	applied	faithfully	to	the	CPU	and	GPU,	and	run	on	same	generation	processors.	When	
codes	 are	 rewritten,	 it	 becomes	 harder	 to	 make	 fair	 comparisons	 as	 multiple	 versions	 must	 be	
maintained	and	optimized.	When	different	generation	hardware	is	used	(Eg.	2010	CPUs	versus	2013	
GPUs),	adjustments	should	be	made	to	normalize	reported	speedups.	Similarly,	when	comparisons	are	
made	with	multiple	 GPUs	 attached	 to	 a	 single	 node,	 further	 adjustments	 should	 be	made.	 Finally,	
comparisons	between	a	GPU	and	a	 single	CPU	core	give	 impressive	 speedups	of	50-100X	but	 such	
results	are	not	useful	or	fair,	and	require	adjustment	to	factor	in	use	of	all	cores	available	on	the	CPU.	
	
When	Intel	released	its	MIC	processor,	called	Knights	Corner	in	2013,	a	new	influx	of	researchers	began	
exploring	fine-grain	computing.	Research	teams	from	NCAR’s	Community	Earth	System	Model	(CESM)	
(Kim	et	 al.	 2013),	Weather	Research	and	Forecast	 (WRF)	Model	 (Michalakes	et	 al.	 2015),	 and	FV3	
parallelized	 select	 portions	 of	 these	 codes	 for	 the	MIC	 and	 reported	 little	 to	 no	 performance	 gain	
compared	 to	 the	 CPU.	 A	 more	 comprehensive	 parallelization	 from	 NOAA’s	 Flow	 Following	 Finite	
volume	 Icosahedral	Model	 (FIM)	 (Bleck,	R.	 et	 al.,	 2015)	 included	both	dynamics	 coupled	with	GFS	
physics	 running	 on	 the	 MIC	 (Rosinski	 2015).	 Execution	 of	 the	 entire	 model	 on	 the	 MIC	 gave	 no	
performance	 benefit	 compared	 to	 the	 CPU.	 A	 common	 sentiment	 in	 these	 efforts	 is	 that	 porting	
applications	to	run	on	the	MIC	is	easy,	but	getting	good	performance	can	be	difficult.	With	few	reports	
of	 better	 MIC	 performance	 than	 the	 CPU,	 most	 believe	 their	 efforts	 will	 pay	 off	 when	 the	 next-
generation	Intel	Knights	Landing	chip	arrives	in	2016.	Further,	optimizations	targeting	the	MIC	have	
improved	CPU	performance,	giving	immediate	benefit	for	the	work.	
	
This	paper	describes	development	of	the	Non-hydrostatic	Icosahedral	Model	(NIM),	a	model	that	was	
designed	to	exploit	MPFG	processors.	The	NIM	was	initially	designed	for	NVIDIA	GPUs	in	2009.	Since	
commercial	Fortran	GPU	compilers	were	not	available	at	that	time,	the	Fortran-to-CUDA	Accelerator	
(F2C-ACC)	(Govett	et	al.	2010)	was	co-developed	with	NIM	to	convert	Fortran	code	into	CUDA,	a	high-
level	programming	language	used	on	NVIDIA	GPUs	(CUDA,	2015).	The	F2C-ACC	compiler	has	been	the	
primary	 compiler	 used	 for	 execution	 of	NIM	on	NVIDIA	GPUs,	 and	has	 served	 as	 a	 benchmark	 for	
evaluation	of	commercial	OpenACC	compilers	from	Cray	and	PGI.	Using	the	same	source	code,	the	NIM	
was	ported	to	Intel	MIC	when	these	processors	became	available.		
	

The	NIM	is	currently	the	only	weather	model	that	runs	on	CPU,	GPU	and	MIC	processors	using	a	single	
source	code.	The	dynamics	portion	of	NIM	uses	OpenMP	(CPU	&	MIC),	OpenACC	(GPU)	and	F2C-ACC	
(GPU)	directives	for	parallelization.	For	distributed	memory	parallelization,	Scalable	Modeling	System	
(SMS)	directives	are	used	to	handle	domain	decomposition,	 inter-process	communications,	and	I/O	
operations	 (Govett	 et	 al.	 1996).	 Collectively,	 these	 directives	 allow	 a	 single	 source	 code	 to	 be	
maintained	 capable	 of	 running	 on	 CPU,	 GPU	 and	 MIC	 processors	 for	 serial	 or	 parallel	 execution.	
Further,	the	NIM	has	demonstrated	efficient	parallel	performance	and	scalability	to	tens	of	thousands	
of	compute	nodes,	and	has	been	useful	for	comparisons	between	CPU,	GPU	and	MIC	processors.	
	
The	rest	of	this	paper	describes	the	NIM	dynamical	core,	with	some	references	to	work	done	on	model	
physics.	Section	2	describes	the	computational	design	of	the	NIM.	Sections	3	and	4	contain	details	on	
the	parallelization	of	NIM	for	Intel	MIC	and	NVIDIA	GPU.	Section	4	also	compares	the	performance	of	
the	F2C-ACC	and	the	PGI	GPU	compilers.	Section	5	highlights	performance	and	scalability	in	terms	of	
device,	node,	and	multiple	nodes.	Using	these	results,	a	cost-benefit	analysis	is	given	based	on	vendor	
list	prices.	The	paper	concludes	with	an	analysis	of	the	work	and	final	remarks	in	Sections	6	and	7.	
	
	
	
To	appear	as	a	side	bar

	

Many-Core	and	GPU	Computing	Explained	
	
Many-Core	and	Graphics	Processing	Units	(GPUs)	represent	a	new	class	of	computing	called	
Massively	Parallel	Fine-Grain	(MPFG).	In	contrast	to	CPU	chips	that	have	up	to	36	cores,	these	
fine-grain	processors	contain	hundreds	to	thousands	of	computational	cores.	Each	individual	
core	 is	 slower	 than	a	 traditional	CPU	core,	 but	 there	are	many	more	of	 them	 available	 to	
execute	 instructions	 simultaneously.	 This	 has	 required	 model	 calculations	 to	 become	
increasingly	fine-grained.	
GPU:	GPUs	are	designed	for	compute-intensive,	highly	parallel	execution.	GPUs	contain	up	
to	five	thousand	compute	cores	that	execute	instructions	simultaneously.	As	a	co-processor	
to	the	CPU,	work	is	given	to	the	GPU	in	routines	or	regions	of	code	called	kernels.	Loop-level	
calculations	are	typically	executed	in	parallel	in	kernels.	The	OpenACC	programming	model	
designates	three	levels	of	parallelism	for	loop	calculations:	gang,	worker	and	vector	that	are	
mapped	to	execution	threads	and	blocks	on	the	GPU.	Gang	parallelism	is	 for	coarse	grain	
calculations.	Worker	level	parallelism	is	fine-grain,	where	each	gang	will	contain	one	or	more	
workers.	 Vector	 parallelism	 is	 for	 Single	 Instruction	 Multiple	 Data	 (SIMD)	 or	 vector	
parallelism	that	is	executed	on	the	hardware	simultaneously.	
MIC:	 Many	 Integrated	 Core	 (MIC)	 hardware	 from	 Intel	 also	 provides	 the	 opportunity	 to	
exploit	more	parallelism	than	traditional	CPU	architectures.	Like	GPUs,	the	clock	rate	of	the	
chips	 is	 2-5	 times	 slower	 than	 current	 generation	 CPUs,	 with	 higher	 peak	 performance	
provided	by	additional	processing	cores,	wider	vector	processing	units,	and	a	fused	multiply-
add	 (FMA)	 instruction.	 The	 programming	 model	 used	 to	 express	 parallelism	 on	 MIC	
hardware	is	traditional	OpenMP	threading	along	with	vectorization.	User	code	can	be	written	
to	offload	computationally	intensive	calculations	from	the	CPU	to	the	MIC	(similar	to	GPU),	
run	in	MIC-only	mode,	or	shared	between	MIC	and	CPU	host.		

	

	 4	

2.	NIM	Design	

2.1	Model	Description	
	
NIM	 is	 a	multi-scale	model,	which	 has	 been	 designed,	 developed,	 tested,	 and	 run	 globally	 at	 3-km	
resolution	to	improve	medium-range	weather	forecasts.	The	model	was	designed	to	explicitly	permit	
convective	cloud	systems	without	cumulus	parameterizations	typically	used	in	models	run	at	coarser	
scales.	In	addition,	NIM	has	extended	the	conventional	two-dimensional	finite-volume	approach	into	
three-dimensional	 finite-volume	 solvers	 designed	 to	 improve	 pressure	 gradient	 calculation	 and	
orographic	precipitation	over	complex	terrain.		
	 	 							 								 	 	 	 	
NIM	uses	the	following	innovations	in	the	model	formulation:	

• A	local	coordinate	system	that	remaps	a	spherical	surface	to	a	plane	(Lee	et	al.	2009)	
• Horizontal	grid	point	calculations	in	a	loop	that	allows	any	point	sequence	(MacDonald	et	al.	

2011)	
• Flux-Corrected	 Transport	 formulated	 on	 finite-volume	 operators	 to	maintain	 conservative	

and	monotonic	transport	(Lee	et	al.	2010)	
• All	differentials	evaluated	as	finite-volume	integrals	around	the	cells	
• Icosahedral-hexagonal	grid	optimization	(Wang	et	al.	2011)	

	
The	icosahedral-hexagonal	grid	is	a	key	part	of	
the	 model.	 This	 formulation	 approximates	 a	
sphere	with	a	varying	number	of	hexagons,	but	
always	 includes	 twelve	 pentagons.	
(Sadourney,	 R.	 et	 el.,	 1968;	 Williamson,	 D.,	
1971).	The	key	advantage	of	this	formulation	is	
the	nearly	uniform	grid	areas	that	are	possible	
over	a	sphere	as	illustrated	in	Figure	1.	This	is	
in	 contrast	 to	 the	 latitude-longitude	 models	
that	 have	 dominated	 global	 weather	 and	
climate	 prediction	 for	 30	 years.	 The	 nearly	
uniform	grid	represents	the	poles	without	the	
notorious	“pole	problem”	inherent	in	latitude-
longitude	 grids	 where	 meridians	 converge	
toward	the	poles.	

	
Figure	 1:	 Icosahedral-hexagonal	 grid	 at	
approximately	450	km	horizontal	resolution.	
	

	
NIM	uses	a	fully	three-dimensional	finite-volume	discretization	scheme	designed	to	improve	pressure	
gradient	calculations	over	complex	terrain.	Three-dimensional	finite-volume	operators	also	provide	
accurate	 and	 efficient	 tracer	 transport	 essential	 for	 next-generation	 global	 atmospheric	 models.	
Prognostic	variables	are	co-located	at	horizontal	cell	centers	(Arakawa,	A.,	and	V.	Lamb,	1977).	This	
simplifies	looping	constructs	and	data	dependencies	in	the	code.	
	
The	numerical	 scheme	utilizes	a	 local	 coordinate	system	remapped	 from	the	spherical	 surface	 to	a	
plane	at	each	grid	cell.	All	differentials	are	evaluated	as	finite-volume	integrals	around	each	grid	cell.	
Flux	corrected	transport	is	formulated	on	finite-volume	operators	to	maintain	conservative	positive-
definite	 transport.	 Passive	 tracers	 are	 strictly	 conserved	 to	 the	 round-off	 limit	 of	 single-precision	
floating-point	operations.	NIM	governing	equations	are	cast	in	conservative	flux	forms	with	mass	flux	
to	transport	both	momentum	and	tracer	variables.	

	 5	

2.1	Computational	Design	

NIM	is	a	Fortran	code	containing	a	mix	of	Fortran	77	and	Fortran	90	language	constructs.	It	does	not	
use	derived	types,	pointers	or	other	constructs	that	can	be	challenging	for	compilers	to	support	or	run	
efficiently4.	The	SMS	library	utilized	by	NIM	for	coarse-grain	parallelism	employs	the	MPI	(Message	
Passing	 Interface)	 library	 to	 handle	 domain	 decomposition,	 inter-process	 communications,	
reductions,	and	other	MPI	operations.		
	
NIM	 was	 designed	 from	 the	 outset	 to	 maximize	 fine-grain	 or	 loop-level	 parallel	 computational	
capability	of	both	NVIDIA	GPU	and	Intel	MIC	architectures.	Primary	model	computations	are	organized	
as	 simple	 dot	 products	 or	 vector	 operations,	 and	 loops	 with	 no	 data-dependent	 conditionals	 or	
branching.	The	NIM	dynamical	 core	 requires	only	 single-precision	 floating	point	computations	and	
runs	well	on	a	single	CPU	core,	achieving	11%	of	peak	performance	on	a	single	Intel	SandyBridge	CPU	
core.	
	
Grid	cells	can	be	stored	in	any	order.	A	lookup	table	is	used	to	access	neighboring	grid	cells	and	edges	
on	 the	 icosahedral-hexagonal	 grid.	 The	model’s	 loop	 and	 array	 structures	 are	 organized	 with	 the	
vertical	dimension	innermost	in	dynamics	routines.	Testing	during	model	development	verified	that	
the	 indirect	 scheme	yielded	 less	 than	1	percent	performance	penalty	because	 the	 cost	of	 the	extra	
reference	can	be	amortized	over	the	innermost,	directly	addressed,	vertical	dimension	(MacDonald	et	
al.	 2010).	 Further,	 unit-stride	 accesses	 in	 the	 vertical	 dimension	 support	 CPU	 and	MIC	 inner-loop	
vectorization,	and	efficient	memory	accesses	on	the	GPU.	
	
For	the	GPU,	NIM	dynamics	has	been	parallelized	with	F2C-ACC	and	OpenACC	directives	and	executes	
completely	on	the	GPU.	Model	state	remains	resident	in	GPU	global	memory.	In	the	model	dynamics,	
data	are	only	copied	between	CPU	and	GPU	(across	the	PCIe	bus)	for	disk	I/O	and	between	GPUs	for	
inter-process	communications.	Physical	parameterizations	have	not	yet	been	ported	to	 the	GPU,	so	
data	must	be	moved	between	the	GPU	and	CPU	every	physics	time	step.	GPU	to	GPU	communications	
is	handled	via	SMS	directives	and	initiated	by	the	CPU.	
	
Fine-grain	 parallelization	 for	 MIC	 (and	 also	 multi-core	 CPU	 nodes)	 is	 implemented	 via	 OpenMP	
directives.	 MIC	 parallelization	 of	 NIM	 was	 easy	 since	 the	 code	 had	 already	 been	 modified	 to	 run	
efficiently	on	the	CPU	and	GPU.	Symmetric	execution,	where	both	the	CPU	host	and	attached	MIC	co-
processor	are	used,	is	also	permitted	and	will	be	described	in	Section	3.		
	
Example	1	shows	representative	code	from	the	NIM	dynamics	with	OpenACC,	F2C-ACC	and	OpenMP	
directives	 prefaced	 with	 !$acc,	 !ACC$,	 and	 !$OMP	 respectively.	 F2C-ACC	 does	 not	 adhere	 to	 the	
OpenACC	standard,	though	the	directives	and	their	placement	in	source	code	are	quite	similar.	In	this	
example,	the	OpenMP	threaded	region	is	identified	by	!$OMP		PARALLEL	DO,	which	corresponds	to	
!ACC$REGION	 and	 !$acc	 parallel	 that	 are	 used	 to	 define	 GPU	 kernels.	 F2C-ACC	 directives	 will	 be	
removed	from	NIM	once	ongoing	comparisons	with	OpenACC	compilers	are	complete.		
	

																																																								
4 The OpenACC specification only recently added support for derived types; pointer abstractions may limit the ability
of compilers to fully analyze and optimize calculations.

	 6	

Example	1:	Representative	Fortran	code	from	NIM,	parallelized	with	OpenMP,	F2C-ACC	and	OpenACC	directives.	For	clarity	in	
this	example,	numeric	arguments	for	the	number	of	threads	(96)	and	blocks	(10242)	in	the	directive	are	used	that	equate	to	the	
loop	bounds	nz	and	ipe-ips+1	respectively.	In	the	actual	NIM	code,	variable	arguments	are	used.	

3.	CPU	and	MIC	Parallelization	
	
Parallelization	for	the	CPU	and	MIC	involved	three	steps:	(1)	insertion	of	OpenMP	directives	to	identify	
thread-level	 parallelism	 in	 the	 code	 and	 fusing	 multiple	 threaded	 loops	 where	 possible,	 (2)	
vectorization	optimizations	using	directives	and	compiler	flags,	and	(3)	other	code	optimizations	and	
runtime	configurations	to	improve	performance.		

3.1	Vectorization	
	
Vectorization	is	an	optimization	where	independent	calculations	executed	serially	within	a	loop	can	
be	 executed	 simultaneously	 in	 hardware	 by	 specially	 designated	 vector	 registers	 available	 to	 each	
processing	core.	The	number	of	operations	that	can	be	executed	simultaneously	is	based	on	the	length	
of	the	vector	registers.	On	the	CPU,	vector	registers	are	currently	256	bits	in	length;	the	KNC	MIC	co-
processor	 contains	 512-bit	 vector	 registers.	 Based	 on	 these	 vector	 lengths,	 eight	 single-precision	
operations	can	be	executed	simultaneously	on	the	CPU,	and	sixteen	such	simultaneous	operations	on	
the	MIC.		As	a	result,	vectorizing	loops	provided	some	benefit	on	the	host,	but	in	most	cases	it	provided	
a	 greater	 improvement	on	 the	MIC.	 Intel	 compilers	 automatically	 attempt	vectorization	by	default,	
with	compiler	flags	available	for	further	optimization	on	specific	hardware.	

3.2	Optimizations	
	
OpenMP	parallelization	of	NIM	dynamics	for	both	host	and	MIC	is	done	exclusively	at	the	horizontal	
loop	level.	Horizontal	looping	in	almost	all	cases	is	outside	of	vertical	looping	and,	if	applicable,	loops	
over	cell	edges.	Indirect	addressing	of	horizontal	indices	(described	earlier)	allows	for	a	single	loop	
over	horizontal	grid	points	owned	by	each	MPI	task.	This	single	loop	structure	enables	a	great	deal	of	
thread	parallelism,	without	relying	on	restrictive	OpenMP	verbs	such	as	“collapse”	(fuses	multiple	OMP	
loops	into	one),	which	are	required	in	some	codes	to	expose	sufficient	parallelism.	In	NIM	there	are	no	
MPI	 communications	 inside	of	 threaded	 loops.	This	 enables	use	of	 a	 “thread	 funneled”	MPI	 library	
(most	MPI	libraries	are	built	this	way),	where	the	assumption	that	no	MPI	communication	happens	

 !$OMP PARALLEL DO PRIVATE (k)
 !ACC$REGION(<96>,<10242>) BEGIN
 !$acc parallel num_gangs(10242) vector_length(96)

 !ACC$DO PARALLEL(1)
 !$acc loop gang
 do ipn=ips,ipe ! Loop over horizontal

 !ACC$DO VECTOR(1,1:nz-1)
 !$acc loop vector
 do k=1,nz-1 ! Loop over vertical levels
 bedgvar(k,ipn,1) = . . .
 bedgvar(k,ipn,2) = . . .
 end do

 < more loops and calculations >
 !$acc parallel end
 !ACC$REGION END
 !$OMP END PARALLEL DO

	 7	

inside	of	threaded	loops	enables	the	MPI	library	to	avoid	numerous	performance-sapping	locks	and	
tests	on	threading.	
	
Most	OpenMP	loops	in	NIM	contain	sufficient	work	to	easily	amortize	the	cost	of	assigning	work	to	
individual	threads	on	loop	startup,	and	thread	synchronization	at	the	end	of	the	loop.	These	costs	are	
significantly	higher	on	the	MIC	than	on	the	SNB	host.	Part	of	the	reason	being	that	the	MIC	has	more	
threads	which	must	be	synchronized,	with	as	many	as	244	per	MIC	card	vs.	16	on	the	SNB	host.	Also	
the	clock	cycle	on	the	MIC	is	more	than	twice	as	slow	as	that	of	the	SNB	host.	As	a	result,	fusing	of	some	
threaded	loops	gave	a	bigger	performance	boost	on	the	MIC	than	the	host.	Some	boost	was	visible	on	
both	architectures	because	in	each	case	the	number	of	thread	synchronization	points	was	reduced.	
	
The	OpenMP	standard	includes	a	verb	(“guided”)	which	tells	the	OpenMP	runtime	library	to	parcel	out	
iterations	of	the	subsequent	threaded	loop	in	a	more	sophisticated	way	than	the	default	mechanism	
(“static”),	where	each	thread	is	handed	an	equal	number	of	loop	iterations.	When	the	“guided”	verb	is	
in	force,	the	OpenMP	runtime	library	parcels	out	initially	relatively	large	numbers	of	loop	iterations	to	
threads.	 Subsequent	 iterations	 are	 parceled	 out	 in	 “hungry	 puppy”	 fashion	 to	 threads	which	 have	
finished	their	initial	work,	with	the	size	of	each	iteration	set	diminishing	as	work	done	by	the	threads	
progresses.	This	procedure	has	a	positive	impact	on	load	imbalance.	Though	most	horizontal	loops	in	
the	NIM	dynamics	contain	equal	work	per	loop	iteration,	it	was	found	that	the	“guided”	verb	provided	
measurable	benefit	in	some	cases	on	the	MIC.	Possible	causes	for	this	imbalance,	even	given	equal	work	
load,	include	memory	contention,	cache	utilization,	and	OS	intervention.	
	
Though	the	discussion	in	this	paper	is	focused	almost	exclusively	on	the	NIM	dynamics,	work	on	the	
physics	package	utilized	in	NIM	has	shown	a	great	advantage	in	deploying	the	“guided”	verb	on	physics	
horizontal	 loops	exercised	on	both	CPU	and	MIC.	 In	NIM	the	physics	 loops	are	both	vectorized	and	
threaded	over	horizontal	iterations.	Each	thread	is	provided	at	least	enough	horizontal	points	at	a	time	
to	enable	vectorization	of	all	the	points	it	is	given.	This	“chunking”	approach	in	a	single	dimension	is	
necessary	 because	 most	 of	 the	 physical	 parameterizations	 contain	 dependencies	 in	 the	 vertical	
dimension	 that	 precludes	 most	 opportunities	 to	 vectorize	 and/or	 thread.	 The	 parameterizations	
contain	much	inherent	load	imbalance,	such	as	solar	radiation	calculations	only	being	done	in	sunlit	
regions,	and	cloud	calculations	only	necessary	where	clouds	are	present.	Thus	 the	“guided”	verb	 is	
ideal	 for	 many	 of	 the	 physical	 parameterizations.	 NIM	 contains	 a	 single	 horizontal	 loop	 over	 all	
physical	parameterizations,	so	“guided”	provides	enormous	benefit	on	both	the	SNB	and	the	MIC.		

3.3	Symmetric	Execution	
	
Parallelization	of	NIM	for	the	MIC	was	done	using	symmetric	mode,	where	both	the	host	and	attached	
MIC	co-processor	share	the	workload.	Communication	between	tasks	is	accomplished	using	the	same	
MPI	primitives	as	homogeneous	(CPU-only)	mode.	The	only	difference	is	that	separate	compilations	
are	 required	 for	 the	 different	 (CPU	 and	 MIC)	 architectures.	 Complications	 imposed	 by	 various	
communication	patterns	in	a	multi-node	run	(e.g.	host-host,	host-mic,	mic-mic)	are	blissfully	hidden	
from	the	application	developer	by	the	MPI	implementation.	
	
In	a	heterogeneous	computational	environment	(in	this	case	host	and	MIC),	inevitably	there	will	be	
load	imbalances	resulting	from	the	different	computational	capabilities	of	the	separate	architectures.	
Noting	that	the	SMS	library	attempts	to	equally	distribute	the	number	of	horizontal	points	assigned	to	
each	MPI	task,	an	attempt	to	mitigate	this	imbalance	was	made	in	NIM	by	varying	the	number	of	MPI	
tasks	placed	on	each	device.	The	“stampede”	system	at	TACC	(Texas	Advanced	Computing	Center)	was	
used	 for	most	 of	 the	MIC	porting	 activity	with	NIM.	This	 system	employs	 SandyBridge	 (SNB)	 host	
processors	and	KNC	MIC	co-processors.	On	this	system	it	turned	out	that	the	time	to	run	a	single	NIM	
time	step	on	a	host	node	roughly	equaled	the	time	to	run	that	same	time	step	on	a	MIC	card.	Thus,	
placing	an	equal	number	of	MPI	tasks	on	the	host(s)	and	attached	co-processor(s)	worked	well.	
	

	 8	

Obtaining	rough	equivalent	performance	on	a	single	SNB	node	and	the	attached	MIC	card	required	
some	software	engineering	work.	After	the	initial	port,	the	SNB	node	was	substantially	faster	than	the	
MIC.	Subsequent	code	modifications	 to	address	vectorization	and	optimizing	OpenMP	performance	
brought	 the	 two	 architectures	 into	 balance.	 Obtaining	 balance	 was	 more	 difficult	 than	 originally	
anticipated,	mainly	 because	 code	modifications	 designed	 to	 improve	 performance	 on	 the	MIC	 also	
improved	performance	on	the	host.	

4.	GPU	Parallelization	

4.1	OpenACC	Compiler	Evaluation	
	
Either	OpenACC	or	F2C-ACC	directives	can	be	used	for	GPU	parallelization	of	NIM.	F2C-ACC	has	been	
an	effective	way	to	push	for	improvements	in	commercial	Fortran	GPU	compilers.	Prior	evaluation	of	
OpenACC	compilers	and	their	predecessors	was	done	in	2011	(CAPS,	PGI)	(Henderson	et	al.	2011)	,	
2013	(PGI,	Cray)	(Govett,	2013)	and	in	2014	(PGI,	Cray)	(Govett	et	al.	2014).	These	evaluations	exposed	
bugs	 in	 the	 compilers,	 and	 areas	 where	 additional	 development	 was	 needed	 to	 support	 weather	
prediction	models	used	at	NOAA.	A	comprehensive	performance	evaluation	in	2014	showed	the	Cray	
and	PGI	compilers	ran	the	dynamics	portion	of	NIM	1.7	and	2.1	times	slower	than	F2C-ACC.	This	led	to	
increased	collaboration	between	NOAA	and	vendors	to	improve	the	performance	of	their	respective	
compilers.	
	
Table	1	shows	the	runtimes	for	NIM	dynamics	routines	with	near	parity	observed	in	performance	with	
the	F2C-ACC	and	PGI	compilers.	PGI	improvements	since	the	2014	evaluation	can	be	attributed	to:	(1)	
better	support	user-defined	fast	memory,	(2)	direct	mapping	of	do-loops	when	loop	bounds	are	known	
and	do	not	exceed	GPU	hardware	limits,	and	(3)	performance	optimizations	that	were	introduced	or	
improved.	While	most	routines	run	faster	with	the	PGI	compiler	than	F2C-ACC,	two	routines	(vdmints	
and	 vdmintv)	 are	 slower.	 The	 cause	 is	 under	 investigation,	 but	 higher	 register	 usage	 by	 the	 PGI	
compiler	may	explain	the	performance	degradation5.	

Table	1:	Performance	of	the	NIM	dynamics	with	the	F2C-ACC,	PGI	and	Cray	compilers.	Runtimes	in	seconds	for	main	routines	
are	shown.	Speedup	represents	runtimes	compared	to	F2C-ACC.		Vdmints	runtime	represents	the	sum	of	three	variants	in	the	
model:	vdmints,	vdmints0,	and	vdmints3.		
	
While	performance	with	both	compilers	is	similar,	code	parallelization	is	simpler	with	the	OpenACC	
compilers,	which	speeds	 the	 time	required	 to	port	applications	 to	 the	GPU.	The	rest	of	 this	section	
describes	OpenACC	parallelization	of	NIM,	with	some	references	to	F2C-ACC	capabilities	that	 led	to	
improvement	in	the	Cray	and	PGI	compilers.	

4.2	OpenACC	Parallelization	
	
Parallelization	 for	 the	GPU	can	be	expressed	 in	 three	phases:	defining	GPU	kernels	and	 identifying	
loop-level	parallelism,	minimizing	data	movement,	and	optimizing	performance.	Parallelization	of	NIM	
																																																								
5 GPUs have a limited number of registers in hardware. Excessive register use can lead to lower occupancy or
concurrency that limits application performance.

Routine	 F2C-ACC	v5.8		 PGI	version	15.10	 PGI	Speedup	
vdmints	 4.58	 5.40	 0.84	
vdmintv	 1.63	 2.29	 0.71	
diag	 1.24	 0.65	 1.90	
flux	 0.98	 1.03	 0.95	
force	 0.61	 0.52	 1.17	
trisol	 0.36	 0.28	 1.28	
timediff	 0.18	 0.15	 1.20	
Total	Runtime	 11.77	 12.34	 0.95	

	 9	

for	these	phases	will	be	described	in	the	next	three	sections.	For	brevity,	the	sentinels	(eg.	!$acc)	are	
omitted.	

4.2.1	Defining	GPU	Kernels	and	Parallelism	
OpenACC’s	parallel	directive	is	used	to	define	code	sections,	called	kernels,	that	will	be	executed	on	
the	 GPU.6	The	 number	 of	 threads	 and	 blocks	 used	 (96	 and	 10242	 respectively	 in	 Example	 1)	 are	
required	arguments	for	F2C-ACC	that	map	directly	to	CUDA	thread	and	grid	blocks	in	the	generated	
code.	While	no	arguments	are	required	with	parallel,	it	was	best	to	specify	resources	explicitly	using	
num_gangs	and	vector_length	(see	Example	1)	to	get	optimal	performance.	A	vector	length	of	96	was	
used	 that	matched	 the	number	of	vertical	 levels	 in	 the	model.	OpenACC’s	 loop	 directive	 is	used	 to	
identify	 parallel	 loops	 along	 with	 vector	 and	 gang	 keywords.	 Using	 similar	 directives,	 F2C-ACC	
demonstrated	the	value	of	directly	mapping	loops	to	thread	and	grid	block	execution	on	the	GPU.	This	
led	to	improvements	to	the	PGI	compiler	to	provide	similar	capabilities.	

4.2.2	Minimizing	Data	Movement	
By	default,	OpenACC	compilers	assume	data	are	resident	on	the	CPU	and	automatically	generate	data	
copies	between	the	CPU	and	GPU	necessary	to	execute	each	kernel.	However,	to	run	efficiently,	data	
movement	between	the	CPU	and	GPU	must	be	minimized	by	keeping	data	resident	on	the	GPU.	With	
OpenACC,	data	regions	are	defined	using	the	data	directive	with	data	movement	specified	optionally	
by	 listing	variables	 to	be	managed	using	 the	pcopy,	pcopyin,	 and	pcopyout	keywords.	The	 letter	 “p”	
preceding	the	copy	is	shorthand	for	“present_or“	and	indicates	the	runtime	system	check	to	determine	
when	a	data	transfer	is	needed.	Asking	the	runtime	system	to	always	perform	the	check	incurs	little	
overhead.	To	keep	data	resident	on	the	GPU,	variables	are	listed	in	the	data	directive	with	enter	and	
exit	clauses	indicate	data	creation	and	removal.	
	
To	further	simplify	data	management	with	OpenACC	compilers,	 the	CUDA	runtime	library	supports	
unified	memory,	a	means	to	programmatically	treat	CPU	and	GPU	memory	as	one	large	memory.	With	
unified	memory,	 data	 are	 automatically	 copied	 between	 GPU	 and	 CPU	 on	 demand	 by	 the	 runtime	
system.	While	less	efficient	than	when	users	prescribe	data	transfers	themselves,	it	reduces	the	time	
and	effort	 required	 to	get	applications	running	on	 the	GPU.	Using	unified	memory,	data	movement	
between	CPU	and	GPU	becomes	a	performance	optimization	rather	than	a	debugging	challenge.	
	
To	 date,	 unified	 memory	 is	 managed	 in	 software	 by	 the	 NVIDIA	 runtime	 system.	 With	 the	 next	
generation	 chip	 (called	 “Pascal”),	 data	 accesses	 will	 be	 managed	 in	 hardware.	 The	 hardware	 will	
include	a	new	high-speed	interconnect	called	NVLINK,	that	will	allow	the	GPU	to	access	CPU	memory	
at	 CPU	memory	 speeds.	 This	 will	 allow	 CPU	 and	 GPU	memory	 to	 be	 treated	 as	 one	 common	 fast	
memory,	simplifying	GPU	programming	and	improving	application	performance.	

4.2.3	Optimizing	Performance	
Fine-tuning	performance	primarily	means	optimizing	the	use	of	the	multi-tiered	memory	available	on	
the	GPU.	To	reduce	memory	use,	F2C-ACC	supports	variable	demotion	to	remove	a	dimension	from	a	
locally	defined	variable.	Demotion	is	particularly	beneficial	when	a	single	dimensional	array	can	be	
replaced	 with	 a	 scalar.	 This	 transformation,	 called	 scalar	 replacement,	 improves	 performance	 by	
replacing	slower	global	memory	access	with	faster	register	accesses.	
	
OpenACC	memory	access	is	intentionally	more	restrictive,	to	avoid	reference	to	specific	details	of	the	
underlying	hardware.	This	improves	portability	and	leaves	the	compilers	free	to	implement	efficient	
use	of	memory	where	possible	through	compiler	analysis	and	optimization.	Implicit	use	of	faster	local	
and	fast	shared	memory	is	possible	in	OpenACC	using	the	private	clause	attached	to	gang	or	vector	
loops.	In	addition,	improved	support	for	cache	memory	by	the	Cray	and	PGI	compilers	permits	explicit	

																																																								
6 OpenACC’s kernel directive was also tried. While simpler to use, it provided less user control over parallelization, and
slower performance than parallel.

	 10	

user-managed	shared	memory	to	improve	application	performance	on	the	GPU.	Variable	demotion	or	
scalar	 replacement	 is	 not	 exposed	 in	 the	 OpenACC	 standard,	 but	 is	 handled	 automatically	 when	
analysis	determines	such	optimizations	can	be	done.	

5.	Performance	and	Scaling	
	
The	NIM	code	has	been	highly	optimized	for	serial	and	parallel	execution.	It	has	demonstrated	good	
scaling	on	both	CPUs	and	GPUs	on	Titan7	where	it	has	run	on	more	than	250,000	CPU	cores	and	more	
than	15,000	GPUs.	 It	has	also	been	 run	on	up	 to	320	 Intel	MIC	 (Xeon-Phi)	processors	at	 the	Texas	
Advanced	Computing	Center	(TACC)8.	Optimizations	targeting	Xeon-Phi	and	GPU	have	also	improved	
CPU	performance.	
	
Since	NIM	has	 been	 optimized	 for	 the	 CPU,	 GPU	 and	MIC,	 it	 is	 a	 useful	way	 to	make	 comparisons	
between	chips.	Every	attempt	is	made	to	make	fair	comparisons	between	same	generation	hardware,	
using	identical	source	code	optimized	for	all	architectures.		Given	the	increasing	diversity	of	hardware	
solutions,	results	are	shown	in	terms	of	device,	node	and	multi-node	performance.	

5.1	Device	Performance	
	
Single	device	performance	is	the	simplest	and	most	direct	comparison	of	chip	technologies.	Figure	2	
shows	performance	running	the	entire	NIM	dynamical	core	on	four	generations	of	CPU,	GPU	and	MIC	
hardware.	 CPU	 results	 are	 based	 on	 standard	 two	 socket	 node	 configurations.	 A	 roughly	 2X	
performance	benefit	favoring	accelerators	is	observed	for	2010	through	2014	generation	GPU	chips.	
In	addition,	the	MIC	Knights	Corner	processor	demonstrates	a	1.3X	speedup	over	the	IvyBridge	CPU.		
	

	
Figure	2:	Runtimes	for	the	NIM	running	at	240	km	resolution	(10242	horizontal	points,	96	vertical	levels)	for	100	time	steps	
with	the	following	chips9:	

Year	 CPU:	2	sockets	 Cores	 GPU	 Cores	 MIC	 cores	
2010/11	 Westmere	 12	 Fermi	 448	 	 	
2012	 SandyBridge	 16	 Kepler	K20x	 2688	 	 	
2013	 IvyBridge	 20	 Kepler	K40	 2880	 Knights	Corner	 61	
2014	 Haswell	 24	 Kepler	K80	 4992	 	 	

																																																								
7 Titan is an AMD-GPU based system containing over 17,000 GPUs, managed by the U.S. Department of Energy’s Oak
Ridge National Laboratory (ORNL).
8 TACC is a National Science Foundation (NSF) supported CPU-MIC cluster at the University of Texas, Austin.
9 Nodes configured with 2 sockets/node were: Westmere: x5650, SandyBridge: E5-2670, IvyBridge E5-2690V2,
Haswell E5-2690V3

49.8

26.8
20

14.3

23.6

15.1 13.9
7.8

16

0

10

20

30

40

50

60

2010/11 2012 2013 2014

ru
nt
im
e	
(s
ec
) CPU

GPU
MIC

	 11	

	
Improvements	 to	 the	 CPU	 chips,	 including	 increased	 memory	 bandwidth,	 advanced	 vector	
instructions,	 and	 steadily	 increasing	 core	 counts,	 have	 been	 sufficient	 to	 generally	 keep	 pace	with	
accelerators.	Of	particular	importance	in	the	CPU	results	is	the	nearly	1.9X	decrease	in	runtime	for	the	
SandyBridge	over	the	Westmere	processor	(26.8	and	49.8	seconds	resp.),	largely	due	to	a	2X	increase	
in	memory	speed.	This	is	because	weather	and	climate	dynamical	cores	are	usually	memory	bound,	
rather	than	compute	bound.	
	
Hyperthreading	is	a	technique	where	the	number	of	execution	threads	is	greater	than	the	number	of	
available	processing	cores.	Overscheduling	can	be	an	effective	optimization	specified	trivially	at	run-
time	for	CPU,	GPU	and	MIC.	Scaling	results	are	shown	for	a	single	MIC	processor	in	Figure	3.	The	MIC	
processor	contains	61	physical	cores,	increasing	performance	demonstrated	out	to	the	maximum	of	
244	threads	permitted	on	the	device.	Hyperthreading	can	be	beneficial	when	a	thread	running	on	a	
core	is	stalled	waiting	on	a	memory	read	or	write.	In	this	case	the	operating	system	can	swap	out	the	
running	thread	and	swap	 in	a	waiting	thread	that	 is	not	otherwise	waiting	on	hardware	resources.	
Near	linear	speedup	to	the	61	physical	cores	is	observed,	with	4-way	hyperthreading	providing	nearly	
an	additional	2X	performance	advantage	beyond	that.	

	
Figure	 3:	 NIM	 thread	 scaling	 on	 a	 single	 MIC	 processor	
containing	61	cores.	The	green	line	is	linear	speedup	reference;	
the	 red	 curve	 is	 observed	 speedup.	 NIM	 dynamics	 achieves	

nearly	 linear	 scaling	 up	 to	 61	 threads,	 with	 a	 2X	 further	
speedup	when	hyperthreading	with	up	to	244	virtual	threads.	

	
Since	 accelerators	 currently	must	be	 attached	 to	 a	CPU	host,	 price-performance	benefit	 is	 reduced	
when	 the	 cost	 of	 all	 hardware	 is	 included.	 This	 practical	 and	 economic	 consideration	 motivates	
comparisons	between	nodes	that	include	both	the	host	and	attached	accelerators.	

	 12	

5.2	Single	Node	Performance	
	
The	basic	components	of	Intel	CPUs	include	two	
CPU	 sockets,	 memory,	 network	 interconnect	
(NIC),	 Peripheral	 Component	 Interconnect	
express	 (PCIe)	 bus	 and	 a	 motherboard.	
Deviations	 from	 this	 basic	 configuration	 are	
available	but	more	expensive	since	 the	volumes	
manufactured	 are	 lower.	 Therefore,	 most	
computing	 centers	 use	 standard,	 high	 volume	
parts	 that	 offer	 the	 best	 price-performance.	
Accelerators	 are	 attached	 to	 these	 nodes	 and	
communicate	with	the	CPU	host	via	the	PCIe	bus.	
Figure	4	shows	a	simple	 illustration	of	 two	CPU	
nodes,	each	containing	two	attached	accelerators	
and	 connected	 via	 high-speed	 network	
interconnect.	
	

	
Figure	 4:	 	 Standard	 Intel	 Sandy	 Bridge	 node	 configuration	
containing	 two	 CPU	 sockets	 per	 node	 with	 attached	
accelerators.	

Figure	5	shows	performance	of	the	NIM	dynamical	core	for	several	traditional	CPU	and	accelerator	
configurations.	 Standard	 two	 socket	 Intel	 IvyBridge	 nodes	were	 used	with	 attached	MIC	 and	 GPU	
accelerators.	The	four	left-most	results	show	runtimes	when	only	the	CPU,	GPU	and	MIC	are	used	and	
appear	individually	in	blue,	green	and	orange	respectively.	The	shaded	results	highlight	performance	
of	the	NIM	for	symmetric	execution,	where	both	the	CPU	and	attached	accelerator	are	used.	The	two	
runtimes	appear	 for	each	configuration	with	symmetric	runs,	one	 in	blue	and	a	second	 in	green	or	
orange,	with	a	numeric	value	representing	the	node	runtime	at	the	top	of	each	column.		

	
Figure	5:	Full	node	performance	for	CPU,	GPU	and	MIC	using	standard	two	socket	Intel	IvyBridge	CPUs	and	one	or	two	attached	
accelerators.	Symmetric	mode	execution	gives	performance	when	both	the	CPU	and	GPU	or	MIC	are	used.	Runtimes	for	the	NIM	
running	at	120	km	resolution	(40968	columns,	96	vertical	levels)	for	100	time	steps	with	the	following	hardware:		
				IB20	–	IvyBridge,			20	cores,	3.0	GHz	(E5	2690-v2)																GPU	-	Kepler	K40								2880	cores,	0.745	GHz	
				IB24	–	IvyBridge,			24	cores,	2.6	GHz	(E5	2697-v2)																MIC	–	KNC	7120															61	cores,	1.238	GHz	
	
For	symmetric	runs,	the	model	sub-domain	is	divided	evenly	between	the	host	and	device	leading	to	
differences	in	execution	time	as	shown.	When	the	accelerator	is	faster	than	the	host,	it	must	wait	for	

•  		CPU	run(me		
•  		MIC	run(me	
•  		GPU	run(me	
						using	F2C-ACC	

	

Symmetric	Mode	
Execu0on	

81	
74	 73	

58	

42	 46	

33	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

IB20	only	 IB24	only	 MIC	only	 GPU	only	 IB24	+	MIC	 IB20	+	GPU	 IB20	+	2	GPU	

R
un

-0
m
e	
(s
ec
)	

120	KM	Resolu0on	(NIM	–	G6)	
40,968	Columns,	96	Ver0cal	Levels	

100	0me	steps	

NIM	Dynamics:	Symmetric	Performance	
Node-to-Node	Comparison:	CPU,	MIC,	GPU	

	

Node	Type:	

Numeric	values	represent	node	run-(mes	for	each	configura(on	

	 13	

the	 host	 to	 complete.	 This	 explains	 the	 slower	 overall	 node	 time	 of	 46	 seconds	 for	 the	 CPU-GPU	
configuration	(IVB20-GPU),	where	the	GPU	runtime	is	significantly	faster	than	the	host	(33	versus	46).	
Performance	of	the	24	core	IvyBridge	was	nearly	equivalent	to	the	MIC	(KNC),	leading	to	a	balanced	
symmetric	result.	
	
These	results	show	significant	performance	benefit	using	symmetric	execution,	especially	when	the	
number	of	accelerators	is	small.	Comparisons	using	two	accelerators	were	tested	that	gave	continued	
improvement	 in	 runtimes	 for	 the	 GPU,	 but	 worse	 performance	 for	 the	 MIC	 (not	 shown)	 due	 to	
hardware	resource	limitations.	Given	Intel’s	plans	to	develop	a	host-less	MIC	chip	(Knights	Landing),	
there	was	 little	 reason	 to	 pursue	 resolution	 of	 this	 issue.	 On	 the	 GPU,	 symmetric	 execution	 yields	
diminishing	benefit	as	the	number	of	accelerators	attached	to	a	single	node	increases.	Since	eight	or	
more	GPUs	can	be	attached	to	a	single	node,	performance	is	further	examined	in	terms	of	strong	and	
weak	scaling.	
	
5.2.1	Strong	Scaling		
Strong	scaling	is	measured	by	applying	increasing	numbers	of	compute	resources	for	a	fixed	problem	
size.	This	metric	is	particularly	important	for	operational	weather	prediction	where	forecasts	should	
run	in	one-percent	of	real-time.	The	requirement	is	normally	achieved	by	increasing	the	number	of	
processors	 until	 the	 given	 time	 threshold	 is	met.	 For	 example,	 a	 one-day	 forecast	 that	 runs	 in	 15	
minutes	represents	one	percent	of	real-time;	runs	in	two	percent	of	real-time	would	take	30	minutes.	
	
Figure	6	shows	strong	scaling	for	NIM	running	at	120KM	resolution	on	a	single	CPU	containing	1	to	8	
GPUs	 per	 node.	 To	 reduce	 inter-GPU	 communications,	 NVIDIA	 developed	 GPUdirect,	 a	 means	 of	
bypassing	the	CPU	host	in	MPI	data	transfers.	Use	of	GPUdirect	improved	multi-GPU	runtimes	for	the	
NIM	by	up	to	38	percent	on	a	single	node	(Middlecoff,	2015).	In	the	figure,	“cols/GPU”	is	the	number	
of	vertical	columns	assigned	to	a	single	GPU.	The	term	column	refers	to	a	single	icosahedral	grid	cell	
with	96	vertical	levels.		As	the	number	of	GPUs	increase	from	1	to	8,	efficiency	decreases	because	there	
are	fewer	columns	and	thus	fewer	calculations	per	GPU.	These	strong	scaling	results	show	the	best	
efficiency	(>	90%)	is	achieved	when	at	least	10,000	columns	of	work	are	given	to	each	GPU.	
	

	
Figure	6:	Strong	scaling	performance,	where	“Cols/GPU”	indicate	the	amount	of	work	(columns	per	GPU)	each	device	must	do.	
Numeric	values	represent	speedup	over	a	single	GPU.	NVIDIA	K80s	packaged	with	2	GPUs	per	board	were	used	for	these	results,	
so	the	2	GPU	result	ran	on	one	K80.	
	
5.2.2	Weak	Scaling	
Weak	scaling	is	a	measure	of	how	solution	time	varies	with	increasing	numbers	of	processors,	when	
the	problem	size	per	processor	is	fixed.	It	is	considered	a	good	way	to	determine	how	a	model	scales	

0.95
0.90 0.77 0.71

0

10

20

30

40

50

1 2 4 6 8

Ru
nt
im
e	
(s
ec
on
ds
)

GPUs

Single	Node	Performance
40,962	Columns,	100	timesteps

Runtime Communications

Cols/GPU				40962 20481																				10242																		6827																						5120

	 14	

to	high	numbers	of	 processors	 and	 is	 particularly	useful	 for	measuring	 communications	overhead.	
Table	2	gives	performance	results	for	a	single	node	with	20,284	columns	per	GPU	for	120KM	and	60KM	
resolution	runs	using	2	and	8	GPUs.	NVIDIA	K80s	packaged	with	two	GPUs	were	used	for	the	runs.	
Computation	time	is	nearly	identical	for	all	runs,	with	communications	time	increasing	to	3.19	seconds	
for	the	one	node,	8	GPU	run.	An	additional	run	using	two	nodes	illustrates	the	substantial	increase	in	
off	node	communications	time.	Given	communications	time	within	a	node	(3.19	seconds)	is	less	than	
the	off-node	time	(7.23	seconds),	the	results	show	that	more	GPUs	could	be	added	to	each	node	without	
adversely	 affecting	 model	 runtimes.	 This	 is	 because	 all	 processes	 must	 wait	 for	 the	 slowest	
communication	to	complete	before	model	execution	can	continue.	
	

Table	2:		Weak	Scaling	performance	with	GPUdirect	for	GPU	to	GPU	data	transfers	for	a	single	node	(not	shaded)	and	multiple	
nodes	(shaded).		Communications	time	have	much	higher	overhead	compared	to	within	node	data	transfers.	
	
5.2.3	Architectural	Considerations	
A	standard	Intel	two	socket	node	is	normally	configured	to	support	up	to	two	accelerators	that	can	
communicate	with	the	host	at	full	speed.	When	more	than	two	devices	are	attached	to	the	host,	they	
must	share	the	PCIe	bandwidth.	More	specialized	solutions	are	available	that	reduce	this	constraint	by	
adding	additional	PCIe	hardware.	Figure	7	illustrates	the	architecture	for	a	Cray-Storm	node,	with	8	
attached	accelerators	(GPUs	are	shown	but	MIC	processors	can	also	be	used).	In	this	configuration,	two	
accelerators	 are	 attached	 to	 each	 PCIe	 communications	 hub,	 with	 two	 hubs	 per	 CPU	 socket.	
Communications	between	sockets	are	handled	with	Intel’s	Quick	Path	Interconnect	(QPI).	
	

		
Figure	7:		Illustration	of	the	Cray	Storm	node	architecture	containing	eight	accelerators	per	node.	NVIDIA	GPUs	are	shown,	but	
other	PCIe	compatible	devices	can	be	used.		Reference	from	Cray.	
	
One	potential	performance	bottleneck	for	this	node	architecture	may	be	the	limited	bandwidth	of	the	
single	InfiniBand	(IB)	connection	shared	by	the	eight	attached	accelerators.	Alternative	node	
configurations	are	available	including	ones	with	multiple	IB	connections,	nested	PCIe	architectures,	
and	solutions	that	avoid	use	of	QPI,	due	to	reported	latency	issues	(Ellis	2015;	Cirrascale	2015).	

GPUs	per	
Node	

Number	of	
Nodes	

Model	
Resolution	

Columns/GPU	 Computation	
Time	

Communications	
Time	

Total	
Runtime	

2	 1	 120	KM	 20,482	 25.13	 0.56	 25.71	
8	 1	 		60	KM	 20,482	 25.16	 3.19	 28.35	
2	 4	 		60	KM	 20,482	 25.22	 7.23	 33.45	

	 15	

These	more	specialized	solutions	offer	potential	benefit	over	standard	high-volume	parts,	where	
application	testing	is	the	best	way	to	determine	overall	cost-benefit.	

5.3	Multi-node	Performance	and	Scaling
	
Good	multi-node	performance	and	scaling	on	hundreds	to	thousands	of	nodes	require	efficient	inter-
process	communications.	For	most	models,	communications	normally	includes	gathering	and	packing	
data	to	be	sent	to	neighboring	processes,	MPI	communications	of	the	data,	and	then	unpacking	and	
distributing	 the	 data.	 Analysis	 of	 NIM	 dynamics	 performance	 showed	 that	 message	 packing	 and	
unpacking	accounted	for	50%	of	inter-GPU	communications	time.	Since	NIM	relies	on	a	lookup	table	
to	 reference	horizontal	 grid	points,	data	 can	be	 reorganized	 in	any	order	 to	eliminate	packing	and	
unpacking.	This	optimization	is	called	“spiral	grid	order”.	
	
Figure	8	illustrates	the	spiral	grid	ordering	used	in	NIM.	Optimal	spiral	grid	ordering	is	based	on	the	
number	of	MPI	ranks	that	will	be	used,	and	is	determined	during	model	initialization.	As	shown	in	the	
figure,	points	are	organized	according	to	where	they	must	be	sent	(as	interior	points)	or	received	(as	
halo	points).	Each	point	in	the	figure	represents	an	icosahedral	grid	column	that	contains	96	vertical	
levels.	In	the	figure,	the	Spiral	Grid	Ordering	section	illustrates	the	method	used	to	order	points	within	
each	MPI	 task.	 	 The	Data	 Layout	 section	 of	 the	 figure	 illustrates	 how	 grid	 points	 are	 organized	 in	
memory	for	optimal	communications	and	computation.	Use	of	the	spiral	grid	order	gave	performance	
benefit	on	all	architectures,	with	a	20	percent	improvement	in	model	runtimes	on	the	GPU,	16	percent	
on	the	MIC-CPU,	and	5	percent	on	the	CPU.	

	
Figure	8:	Spiral	Communications	where	Spiral	Data	Layout	shows	interior	points	for	several	MPI	tasks,	organized	with	data	
sent	to	neighbor	tasks	in	black,	and	points	to	be	received	in	different	colors	from	each	MPI	task.	Data	Storage	Layout	shows	
how	data	are	organized	in	memory,	where	each	horizontal	point	shown	represents	a	model	column	containing	96	vertical	levels.	
	

Interior	Points	
MPI	Task	5	

Interior	Points	
MPI	Task	6	

Interior	Points	
MPI	Task	4	

MPI	Task	2	

Interior	Points	 Halo	Points	(received)	

Task4	 Task6	Task8	 Task3	

MPI	Task	8	

MPI	Task5	

M
PI
	R
ec
ei
ve
	

M
PI	Receive	

M
PI
	S
en

d	

SMS	Inter-Process	CommunicaBons		
-	Spiral	Grid	OpBmizaBon	-	

Data	Storage	Layout		

Spiral	
Data	Layout	 Halo	Points	(received)	

M
PI
	S
en

d	

MPI	Task	5	

	 16	

Figure	9	shows	multi-node	scaling	results	for	20	to	320	CPU,	GPU,	and	symmetric	runs	with	the	CPU	
and	MIC.	The	hardware	used	in	the	runs	was	older	generation	Intel	SandyBridge	(2012),	NVIDIA	K20x	
(2012),	and	Intel	Knights	Corner	(2013).	These	results	show	the	MIC	and	GPU	are	best	when	they	have	
more	than	10,000	columns	of	work	per	device.	CPU	performance	is	best	when	there	is	less	work	per	
CPU.	 Increasing	efficiency	(0.65	to	0.71)	and	superscalar	performance	 is	observed	(4096	and	2048	
columns	resp.)	because	computations	fit	better	in	cache	memory.	
	

	
Figure	9:	NIM	scaling	comparison	for	dual-socket	SandyBridge	CPU,	NVIDIA	Kepler	K20x	GPU,	and	symmetric	execution	with	
Intel	Knights	Corner	(MIC)	and	a	dual	socket	Intel	SandyBridge	CPU.	The	horizontal	axis	gives	the	number	of	nodes	used	for	the	
fixed	problem	size.	Cols	/	Node	indicate	the	number	of	columns	per	node,	consisting	of	either	the	dual	socket	CPU,	GPU	or	split	
between	the	CPU	and	MIC	for	symmetric	execution.	Efficiency	compared	to	the	twenty	node	runtime	appears	as	a	numeric	value	
in	each	performance	bar.	

5.4	Cost-Benefit	(GPU)	
	
Cost	benefit	for	the	GPU	is	determined	using	list	prices	as	specified	from	Intel	and	NVIDIA	in	Table	3.	
The	CPU	node	estimate	was	based	on	a	standard	two	socket,	24	core,	Intel	Haswell	node,	that	includes	
the	 processor,	 memory,	 network	 interconnect,	 and	 warranty.	 The	 system	 inter-connect	 was	 not	
included	in	cost	calculations,	based	on	the	assumption	that	the	cost	for	each	system	would	be	similar.	
While	 significant	 discounts	 are	 normally	 offered	 to	 customers,	 it	 would	 be	 impossible	 to	 fairly	
represent	them	in	any	cost-benefit	evaluation	here.	
	

Table	3:	List	prices	for	Intel	Haswell	CPU,	Intel	MIC,	and	NVIDIA	K80	GPU	processors.	The	CPU	node	is	based	on	the	cost	of	a	
Dell	R430	rack-mounted	system.	
	
	

																																																								
10 http://ark.intel.com/products/81713/Intel-Xeon-Processor-E5-2690-v3-30M-Cache-2_60-GHz
11 http://www.anandtech.com/show/8729/nvidia-launches-tesla-k80-gk210-gpu
12 http://ark.intel.com/products/75799/Intel-Xeon-Phi-Coprocessor-7120P-16GB-1_238-GHz-61-core
13 Dell PowerEdge R430 server, rack mounted, quote 3/2/2015, see appendix for details.

.95

.94 .65 .71

.87
.85 73 .67

.84
.70 .53

0

10

20

30

40

50

60

70

80

20 40 80 160 320

Ru
nt
im
e	
(s
ec
on
ds
)

Nodes

NIM		Multi-Node	Performance
30	KM	resolution,	96	vertical	levels

100	model	timesteps CPU

GPU

MIC+CPU

Cols	/	Node		 32768																					16384																						8192																								4096																						2048

Chip	 Part	 Cores	 Power	(watts)	 OEM	Price	
Haswell	 E5-2690-V3		(2)	 24	 270	 418010	
NVIDIA	K80	 K80	 4992	 300	 500011	
Intel	MIC	(KNC)	 7120P	 61	 300	 412912	
Haswell	CPU	Node	 Dell	R430	 24	 -	 650013	

	 17	

Figure	10	shows	a	cost-benefit	based	on	running	NIM	dynamics	at	30km	model	resolution.	Each	of	the	
five	system	configurations	shown	produced	a	3	hour	forecast	in	23	seconds	or	0.20	percent	of	real-
time.	The	CPU-only	configuration	(upper-left	point)	required	960	cores	or	40	Haswell	nodes.	The	right-
most	configurations	used	20	NVIDIA	K80	GPUs	that	were	attached	to	20,	10,	8	and	5	CPUs	respectively.	
The	 execution	 time	 of	 23	 seconds	 can	 be	 extrapolated	 to	 1.6	 percent	 of	 real-time	 for	 a	 3.75KM	
resolution	model	when	per-process	workload	remains	fixed	(weak-scaling)14.	The	20,482	columns	of	
work	per	GPU,	is	also	consistent	with	95	percent	device	efficiency	given	in	Figure	5.	

	
Figure	10:	Cost	comparison	for	CPU-only,	and	CPU-GPU	systems	needed	to	run	100	time	steps	of	NIM	dynamics	in	23	seconds.	
Runtimes	do	not	include	model	initialization	or	I/O.	Cost	estimates	are	based	on	list	prices	for	hardware	given	in	Table	5.	The	
CPU-only	system	used	40	Haswell	CPU	nodes.	Four	CPU-GPU	configurations	were	used,	where	“numCPUs”	 indicate	the	total	
number	of	CPUs	used,	and	“K80s	per	CPU”	indicate	the	number	of	accelerators	attached	to	each	node.	
	
Based	on	list	prices	in	Table	3,	a	40	node	CPU	would	cost	$260,000.	Systems	configured	with	1	to	4	
NVIDIA	 K80s	 per	 CPU	 are	 shown	 that	 lower	 the	 price	 of	 the	 system	 from	 $230K	 to	 $132.5K	
respectively.	For	these	tests,	20	NVIDIA	K80s	were	used	containing	2	GPUs	per	board;	no	changes	in	
run	times	were	observed	for	the	four	CPU-GPU	configurations.	Systems	such	as	Cray	Storm	support	8	
or	more	K80s	that	could	give	additional	cost	benefit	favoring	GPUs.	

6.	Discussion	
	
The	 NIM	 demonstrates	 that	 weather	 prediction	 codes	 can	 be	 designed	 for	 high	 performance	 and	
portability	targeting	CPU,	GPU	and	MIC	architectures	with	a	single	source	code.	Inherent	in	the	design	
of	NIM	has	 been	 the	 simplicity	 of	 the	 code,	 use	 of	 basic	 Fortran	 language	 constructs,	 and	minimal	
branching	in	loop	calculations.	Use	of	Fortran	pointers,	derived	types,	and	other	constructs	that	are	
not	well	 supported	 or	 are	 challenging	 for	 compilers	 to	 analyze	 and	 optimize	were	 avoided.	 NIM’s	
icosahedral-hexagonal	grid	permits	grid	cells	to	be	treated	identically,	which	minimizes	branching	in	
grid	point	calculations.	Further,	code	design	separated	fine-grain	and	coarse	grain	(MPI)	parallelism.	
This	was	primarily	due	to	limitations	in	F2C-ACC,	but	had	a	benefit	of	organizing	calculations	to	avoid	
creation	and	execution	of	small	parallel	regions,	where	synchronization	and	thread	startup	(CPU,	MIC)	
and	synchronization	or	kernel	startup	(GPU)	time	can	be	significant.	
	

																																																								
14 Each doubling in model resolution requires 4X more compute, and a 2X increase in the number of model time-steps.
Assuming perfect scaling, an increase in model resolution from 30KM to 3.75KM requires 64X (43) more GPUs, with
an 8X (23) increase in the number of model time-steps. Therefore, scaling to 3.75KM is calculated as 8 * 0.20 = 1.6%
of real-time. Additional increases in compute and time-to-solution are expected when physics calculations are included.

260
230

165
145.5 132.5

0

50

100

150

200

250

300

40 20 10 7 5

Co
st
	(t
ho
us
an
ds
)

numCPUs:

CPU	versus	GPU	Cost-Benefit
NIM	30	km	resolution

CPU	only CPU	&	GPU

K80sper	CPU:					0																	1																	2 3																	4														

	 18	

The	choice	to	organize	arrays	and	loop	calculations,	with	an	innermost	vertical	dimension	and	indirect	
addressing	to	access	neighboring	grid	cells,	simplified	code	design	without	sacrificing	performance.	It	
also	improved	code	portability	and	performance	in	unanticipated	ways.	First,	the	innermost	vertical	
dimension	of	96	levels	was	sufficient	for	CPU	and	MIC	vectorization,	but	essential	for	the	GPU’s	high-
core	count	devices.	With	few	dependencies	in	the	vertical	dimension,	vectorization	(CPU,	MIC),	and	
thread-parallelism	 (GPU)	 were	 consistently	 available	 in	 dynamics	 routines.	 Second,	 indirect	
addressing	of	grid	cells	gave	flexibility	and	benefit	in	how	they	could	be	organized.	For	example,	spiral	
grid	re-ordering	to	eliminate	MPI	message	packing	and	unpacking	gave	up	to	20	percent	improvement	
in	model	performance.	
			
Optimizations	 benefitting	 one	 architecture	 also	 helped	 the	 others.	 In	 the	 rare	 event	 performance	
degraded	on	one	or	more	architecture,	the	changes	were	re-formulated	to	gain	positive	benefit	on	all.	
The	 PGI	 OpenACC	 compiler	 now	 matches	 the	 performance	 of	 the	 F2C-ACC	 compiler.	 OpenACC	
compilers	 continue	 to	 mature,	 benefiting	 from	 F2C-ACC	 comparisons	 that	 exposed	 bugs	 and	
performance	issues	that	were	corrected.	Parallelization	is	simpler	with	OpenACC,	largely	because	data	
movement	between	CPU	and	GPU	is	managed	by	the	runtime	system.	Unified	memory	on	the	GPU	is	
expected	 to	 further	 simplify	 parallelization,	 narrowing	 the	 ease-of-use	 gap	 versus	 OpenMP.	 These	
improvements	have	led	of	a	decision	to	phase	out	use	of	F2C-ACC,	relying	solely	on	OpenACC	compilers	
for	NIM	and	other	models.		
	
The	scope	of	this	paper	primarily	focused	on	model	dynamics,	largely	because	domain	scientists	had	
not	 decided	 which	 physics	 suite	 to	 use	 for	 high-resolution	 (<	 4KM)	 runs.	 Parallelization	 of	 select	
microphysics	 and	 radiation	 routines	 improved	performance	 on	 all	 architectures,	 but	MIC	 and	GPU	
runtimes	 were	 slower	 than	 the	 CPU	 (Henderson	 et	 al.	 2015;	 Michalakes	 et	 al.	 2015).	 Lower	
performance	 is	 likely	due	 to	more	conditionals,	and	 less	parallelism	 in	physics	calculations	 than	 in	
dynamics	routines.	Conditionals	restrict	SIMD	parallelism,	limiting	performance.	Further	parallelism	
is	 largely	 determined	 by	 data	 dependencies	 in	 the	 scientific	 formulations.	 Since	 physics	 routines	
generally	 contain	 dependencies	 in	 the	 vertical	 column,	 parallelism	 is	 often	 only	 available	 in	 the	
horizontal	dimension.	To	ease	this	limitation,	chunking	was	described,	a	means	to	divide	parallelism	
between	vectorization	and	thread	parallelism	on	the	CPU	and	MIC	processors	 that	can	be	similarly	
mapped	to	the	thread	and	block	parallelism	on	the	GPU.	Hyper-threading	on	the	CPU	and	MIC	was	also	
described,	an	effective	load	balancing	mechanism	when	multiple	vertical	columns	are	executed	by	each	
MPI	task.	
	
The	paper	gives	a	cost-benefit	 calculation	 for	NIM	dynamics	 that	showed	 increasing	value	as	more	
accelerators	per	node	are	used.	However	there	are	several	 limitations	 in	 the	value	of	 these	results.	
First,	the	comparison	was	only	for	model	dynamics;	when	physics	is	included,	model	performance	and	
cost	benefit	 favoring	 the	GPU	 is	 expected	 to	decrease.	 Second,	use	of	 list	 price	 is	naïve	 as	 vendors	
typically	 offer	 significant	 discounts,	 particularly	 for	 large	 installations.	 Third,	 calculations	 did	 not	
include	the	cost	of	 the	system	interconnect.	For	small	systems	with	tens	of	nodes	this	was	deemed	
acceptable	 for	 comparison	 as	 there	 would	 be	 little	 difference	 in	 price	 or	 performance.	 However,	
comparisons	with	hundreds	 to	 thousands	of	nodes	would	amplify	 the	 role	of	 the	 interconnect	 and	
would	need	to	be	included	in	cost-benefit	calculations.	
	
Finally,	the	Next	Generation	Global	Prediction	System	(NGGPS)	program	is	tasked	with	developing	the	
Nation’s	next	global	weather	prediction	model	that	will	be	used	by	NOAA’s	National	Weather	Service	
around	2020.	As	part	of	the	High	Impact	Weather	Prediction	Project	(HiWPP),	two	dynamical	cores	
were	selected	as	leading	candidates	to	replace	the	existing	operational	Global	Forecast	System	(GFS):	
NOAA	GFDL’s	Finite-Volume	cubed	(FV3)	(Lin	2004)	and	the	Model	Prediction	Across	Scales	(MPAS)	
(Skamarock	et	al.	2015)	from	NCAR.	The	NIM	work	can	be	used	as	a	template	for	MPFG	parallelization	
of	these	models	to	enable	running	global	forecast	models	operationally	at	3KM	resolution	in	the	next	
decade.	

	 19	

7.	Conclusion	
	
The	 NIM	 is	 currently	 the	 only	 weather	 model	 able	 capable	 of	 running	 on	 CPU,	 GPU	 and	 MIC	
architectures	with	a	single	source	code.	Performance	of	the	NIM	dynamical	core	was	described.	CPU,	
GPU	and	MIC	 comparisons	were	made	 for	device,	 node	 and	multi-node	performance.	 Performance	
calculations	were	made	based	on	goal	of	running	at	3KM	resolution	in	1-2	percent	of	real-time.	Device	
comparisons	 show	NIM	 ran	 on	 the	MIC	 and	GPU,	 1.3X	 and	 1.9X	 faster	 respectively	 than	 the	 same	
generation	CPU	hardware.	The	1.3X	MIC	speedup	versus	a	dual	socket	CPU	is	significant,	since	no	other	
weather	 or	 climate	 model	 has	 been	 able	 to	 demonstrate	 speedup	 favoring	 the	 MIC.	 Single	 node	
comparisons	demonstrated	 the	value	of	 symmetric	execution	where	both	 the	CPU	and	GPU	or	MIC	
hardware	was	used.	For	multi-node	execution,	the	spiral	grid	ordering	was	described	that	eliminated	
data	packing	and	unpacking	and	gave	performance	benefit	on	all	architectures.	Finally,	a	cost-benefit	
analysis	demonstrated	increasing	benefits	favoring	the	GPU	when	up	to	8	accelerators	were	attached	
to	each	CPU	host.	
	
New	hardware	in	2016	looks	promising	and	will	invite	further	comparisons.	Both	GPU	and	MIC	chips	
will	 include	 high	 speed	 memory	 with	 up	 to	 5	 times	 faster	 performance	 than	 current	 generation	
hardware.	For	the	MIC,	the	hostless	Knights-Landing	processor	will	no	longer	be	attached	to	a	CPU	
host,	which	should	also	improve	inter-node	communications	performance.	For	the	GPU,	the	Pascal	and	
Volta	chips	will	offer	hardware	supported	unified	memory	and	faster	communications	which	should	
improve	programmability	and	performance.	These	improvements,	along	with	more	mature	compilers,	
should	further	simplify	porting	codes	to	GPUs.	
	
Fundamental	to	achieving	good	performance	and	portability	has	been	the	design	of	NIM.	The	simplicity	
of	the	code	design,	looping	and	array	structures,	and	the	indirect	addressing	of	icosahedral	grid	were	
all	chosen	to	expose	the	maximum	parallelism	to	the	underlying	hardware.	The	work	reported	here,	
represents	a	successful	development	effort	by	a	team	of	domain	and	computer	scientists	and	software	
engineers.	 	 Scientists	 write	 the	 code,	 computer	 scientists	 are	 responsible	 for	 the	 directive-based	
parallelization	and	optimization,	and	software	engineers	maintain	the	software	infrastructure	capable	
of	supporting	development,	testing	and	running	the	model	on	diverse	supercomputer	systems.	
	
Applying	NIM	performance	and	portability	techniques	to	the	MPAS	and	the	FV3	models	is	a	next	step	
in	the	work.	The	HiWPP	report	showed	that	both	models	demonstrated	good	scaling	to	130,000	CPU	
cores	(Michalakes	et	al.,	2015).	While	these	results	 indicate	sufficient	parallelism	is	available,	some	
work	will	be	required	to	adapt	them	to	run	efficiently	on	GPU	and	MIC	processors.	
	
In	 the	 next	 decade,	 HPC	 is	 expected	 to	 become	 increasingly	 fine-grained	with	 systems	 containing	
potentially	hundreds	of	millions	of	processing	cores.	To	take	advantage	of	these	systems	new	weather	
prediction	models	will	need	to	be	co-developed	by	scientific	and	computational	teams	to	incorporate	
parallelism	in	model	design,	code	structure,	algorithms,	and	underlying	physical	processes.	
	

ACKNOWLEDGMENTS	
	
Thanks	to	technical	teams	at	Intel,	Cray,	PGI,	and	NVIDIA	who	were	responsible	for	fixing	bugs,	and	
providing	access	to	the	latest	hardware	and	compilers.	Thanks	also	to	the	staff	at	ORNL	Titan,	and	NSF	
TACC	 for	 providing	 system	 resources	 and	 helping	 to	 resolve	 system	 issues.	 This	 work	 was	 also	
supported	in	part	by	the	Disaster	Relief	Appropriations	Act	of	2013	and	the	NOAA	HPCC	program.	

REFERENCES	
	
Arakawa,	A.,	and	V.	R.	Lamb,	1977:	Computational	design	of	the	basic	dynamical	processes	of	the	

UCLA	general	circulation	model.	Meth.	Comput.	Phys.,	17,	Academic	Press,	New	York,	173–265.	

	 20	

Bleck,	R.,	J.	Bao,	S.	Benjamin,	J.	Brown,	M.	Fiorino,	T.	Henderson,	J.	Lee,	A.	MacDonald,	P.	Madden,	J.	
Middlecoff,	J.	Rosinski,	T.	Smirnova,	S.	Sun	and	N.	Wang,	2015:	Monthly	Weather	Review,	143,	
2386-2403, DOI:	10.1175/MWR-D-14-00300.1

Carpenter	I.	R.	Archibald,	K.	Evans,	and	M.Taylor,	2013:	Progress	towards	accelerating	HOMME	on	
hybrid	multi-core	systems,	Intl	Journal	of	High	Performance	Computing	Applications,	27(3),	335-
347	–	July	2013,	DOI:	10.1177/1094342012462751.		

Cirrascale,	2015:	Scaling	GPU	compute	performance,	Cirrascale	white	paper,	June	2015,	
http://www.cirrascale.com/documents/whitepapers/Cirrascale_ScalingGPUCompute_WP_M987_
REVA.pdf.		

CUDA	C	Programming	Guide,	2015:	http://docs.nvidia.com/cuda/cuda-c-programming-guide/.	
Ellis,	S.,	2015:	Exploring	the	PCI	bus	routines,	CirraScale	Blog	post,	August	13,	2014,	

http://www.cirrascale.com/blog/index.php/exploring-the-pcie-bus-routes/.	
Fuhrer,	O.,	C.	Osuna,	X.	Lapillone,	T.	Gysi,	B.	Cumming,	M.	Bianco,	A.	Arteaga,	and	T.	Schulthess,	2014:	

Towards	a	performance	portable,	architecture	agnostic	implementation	strategy	for	weather	and	
climate	models,	Computing	Frontiers	and	Innovations,	1,	No	1,		DOI:	10.14529/jsfi1401.	

Govett,	M,	L.	Hart,	T.	Henderson,	and	D.	Schaffer,	2003:	The	Scalable	Modeling	System:	directive-
based	code	parallelization	for	distributed	and	shared	memory	computers,	Parallel	Computing,	
29(8),	995-1020.	

Govett,	M.,	J.	Middlecoff	and	T.	Henderson,	2010:	Running	the	NIM	next-generation	weather	model	on	
GPUs,	10th	IEEE/ACM	Intl	Conf	on	Cluster,	Cloud	and	Grid	Computing,	CCGrid	2010,	17-20,	May	
2010,	Melbourne,	Australia.	

Govett,	M.,	Using	OpenACC	compilers	to	run	FIM	and	NIM	on	GPUs,	2013	NCAR	multi-core	workshop,	
Boulder,	Colorado,	Sept	2013,	https://www2.cisl.ucar.edu/sites/default/files/govett_6b.pdf	

Govett,	M.,	J.	Middlecoff	and	T.	Henderson,	Directive-based	parallelization	of	the	NIM	weather	odel	
for	GPUs,	First	Workshop	on	Accelerator	Programming	using	Directives	(WACCPD	14),	pp	55-61,	
New	Orleans,	LA,	November	2014.	

Henderson,	T.,	M.	Govett,	and	J.	Middlecoff,	2011:	Applyng	Fortran	GPU	compilers	to	numerical	
weather	prediction,	2011	Symposium	on	Application	Accelerators	in	High	Performance	Computing	
(SAAHPC	2011),	pp	34-41,	Knoxville,	TN,	August	2011.	

Henderson,	T.,	J.	Michalkes,	I.	Gokhale	and	A.Jha,	2015:	Optimizing	Numerical	Weather	Prediction,	
High	Performance	Parallelism	Pearls	Volume	Two:	Multicore	and	Many-core	Programming	
Approaches,		7-23,	Morgan	Kaufmann	publisher,	DOI:	10.1016/B978-0-12-803819-2.00016-1.	

Lapillonne,	X,	and	O.Fuhrer,	2014:	Using	Compiler	Directives	to	Port	Large	Scientific	Applications	to	
GPUs:	An	Example	from	Atmospheric	Science,	Parallel	Process.	Letters.	24,	1450003	[18	pages]	
DOI:	10.1142/S0129626414500030.	

Lee,	J.	and	A.E.	MacDonald,	2009:	A	finite-volume	icosahedral	shallow	water	model	on	local	
coordinate,	Monthly	Weather	Review,	137,	1422-1437.	

Lee,	J.,	R.	Bleck	and	A.E.	MacDonald,	2010:	A	multistep	flux	corrected	transport	scheme,	Journal	of	
Computing	Physics,	229,	9284-9298.	

Lin,	S-J.	2004:	A	vertically	lagrangian	finite-volume	dynamical	core	for	global	models,	J.Computing	
Physics,	229,	9284-9298.	

MacDonald,	A.E.,	J.	Middlecoff,	T.	Henderson	and	J.	Lee,	2011:	A	general	method	for	modeling	on	
irregular	grids,	Intl	Journal	of	High	Performance	Computing	Applications,	25(4),	392-403,	DOI:	
http://dx.doi.org/10.1177/1094342010385019.	

Michalakes,	J.,	M.	Iacono,	and	E.	Jessup,	2015:	Optimizing	Weather	Model	Radiative	Transfer	Physics	
for	Intel’s	Many	Integrated	Core	(MIC)	Architecture,	preprint.	

Michalakes,	J,	M.	Govett,	T.	Black,	H.	Juang,	A.	Reinecke,	and	B.	Skamarock,	AVEC	Report:	NGGPS	
Level-1	Benchmarks	and	Software	Evaluation,	April	30,	2015,	
http://www.nws.noaa.gov/ost/nggps/DycoreTestingFiles/AVEC%20Level%201%20Benchmarki
ng%20Report%2008%2020150602.pdf.	

Middlecoff,	J.,	2015:	Optimization	of	MPI	message	passing	in	a	multi-core	NWP	dynamical	core	
running	on	NVIDIA	GPUs,	in	Fifth	NCAR	multi-core	workshop,	Boulder,	Colorado,	Sept	2015,	
https://www2.cisl.ucar.edu/sites/default/files/Abstract_Middlecoff.pdf.	

	 21	

Norman,	M.,	I.	Demeshko,	J.	Larkin,	A.	Vose,	and	M.	Taylor,	2015:	Experiences	with	CUDA	and	
OpenACC	from	porting	ACME	to	GPUs,	in	Fifth	NCAR	multi-core	workshop,	Boulder,	Colorado,	Sept	
2015,	https://www2.cisl.ucar.edu/sites/default/files/Norman_Slides.pdf.	

Nyugen,	H.,	C.Kerr,	Z.Liang,	2013:	Performance	of	the	Cube-Sphere	Atmospheric	Dynamical	Core	on	
Xeon	and	Xeon-Phi	Architectures,	in	Third	NCAR	Multi-core	Workshop,	Boulder	Colorado,	Sept	
2013,	https://www2.cisl.ucar.edu/sites/default/files/vu_3a.pdf.	

Putnam,	B.,	2011:	Graphics	Processing	Unit	(GPU)	acceleration	of	the	Goddard	Earth	Observing	
System	Atmospheric	Model,	NASA	Technical	Report,	Jan	2011.	

Rosinski,	J.,	Porting	and	Optimizing	NCEP’s	GFS	Physics	Package	for	Unstructured	Grids	on	Intel	Xeon	
and	Xeon-Phi,	in	Fifth	NCAR	Multi-core	Workshop,	Boulder,	Colorado,	Sept	2015,	
https://www2.cisl.ucar.edu/sites/default/files/Rosinski_slides.pdf.	

Sadourny,	R.,	A.	Arakawa	and	Y.	Mintz,	1968:	Integration	of	non-divergent	barotropic	vorticity	
equation	with	an	icasahderal-hexagonal	grid	for	the	sphere,	Monthly	Weather	Review	96	(6):	351-
356,	DOI:	http://dx.doi.org/10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2	

Sawyer,	W.,	Zaegal	G.,	Linardakis,L.,	2014:	Towards	a	multi-node	OpenACC	Implementation	of	the	
ICON	Model,	EGU	General	Assembly	2014,	held	27	April	-	2	May,	2014	in	Vienna,	Austria,	
id.15276.	

Skamarock,	B.,	J.	Klemp,	M.	Duda,	L.	Fowler,	S.	Park,	and	T.	Ringler,	2012:	A	multi-scale	non-
hydrostatic	atmospheric	Model	using	centroidal	voronoi	tessellations	and	C-grid	staggering,	
Monthly	Weather	Review,	240,	3090-3105,	DOI	10.1175/MWR-D-11-00215.1.	

Top500	Website,	2015:	http://www.top500.org/lists/2015/11/.	
Wang,	N.	and	J.	Lee,	2011:	Geometric	properties	of	the	icosahedral-hexagonal	grid	on	the	two-sphere,	

SIAM	J.	Sci.	Computing,	33(5):	2536-2559.	
Whitaker,	J.,	2015:	HIWPP	non-hydrostatic	dynamical	core	tests:	Results	from	idealized	test	cases,	

Jan-21-2015,	http://www.nws.noaa.gov/ost/nggps/DycoreTestingFiles/HIWPP_idealized_tests-
v8%20revised%2005212015.pdf.	

Williamson,	D.,	1971:	A	comparison	of	first	and	second-order	difference	approximations	over	a	
spherical	geodesic	grid,	J.Comp.Phys.,	7(2),301-309,	April	1971,	DOI:	doi:10.1016/0021-
9991(71)90091-X.	

Yashiro,	H.,	A.	Naruse,	R.	Yoshida,	H.	Tomita,	2014:	A	global	atmosphere	simulation	on	a	GPU	
supercomputer	using	OpenACC:	Dry	dynamical	cores	tests,	TSUBAME	ESJ	Vol.12	(Pub.	Sep.	22,	
2014).	

	

